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Behaviour of the complex dielectric function 
and energy loss spectrum of copper in the 
[1 1 O] direction in the energy range 
2 < 4 Rydberg 

ABU E L - H A S S A N  SEOUD 
Physics Department, Faculty of Science, Tanta University, Tanta, Egypt 

The complex wave vector- and frequency-dependent dielectric function, ~ (q, 09) = 
~1 (q, 09) + ~2 (q, ~o), for copper is calculated using realistic band energies and wave func- 
tions. The BIoch states ~bk (r) are obtained from the modified augmented plane wave method 
(MAPW) with the Chodorow potential. Results are presented for the principal direction of q, 
[1 1 0]. About 70 bands and 60 plane waves at 10 k-points in the 1/48th of the Brillouin 
zone are considered. An additional peak was found at the energy loss spectrum of copper 
whose centre is situated near 2.1 Rydberg, its centre moves gradually to the high energy 
side with increasing IqL. According to our knowledge, it is the first time this result has been 
calculated theoretically or even measured experimentally in the [1 1 0] direction for copper. 

1. I n t r o d u c t i o n  
The response of electrons to a potential causes read- 
justment of their distribution and gives rise to the 
screening of the potential involving the well-known 
quantity, the dielectric function, e(q, co) = ~ (q, co) + 
e2 (q, co). This quantity plays an important role in the 
study of various properties, e.g. transport phenom- 
enon, lattice defects, and optical properties. Conse- 
quently, it has been the subject of many investigations. 

It is shown [1] that a measurement of the angular 
distribution of inelastically scattered fast electrons is a 
direct measurement of the imaginary part of the inverse 
dielectric function of the solid, Im [-e-~(q ,  co)] 
(known as the energy loss spectrum), at the frequency 
and momentum of the energy transfer to the electrons 
in the solid. It is also known [2, 3] that peaks in 
the energy loss spectrum are generally interpreted as 
excitations of plasmons. They will occur in that energy 
region where Im [e(q, co)], ~z, is small and Re [~ (q, co)], 
e~, vanishes. The plasma frequency is given by the high 
frequency zero of e~. Because the plasmon energy of 
the electron gas of the same electron density as that of 
copper is about 0.8 Ry, the observed energy loss spec- 
trum is not free electron like, but its character is 
ascribed to the interband transition from the 3d-bands 
to the empty bands. We have proved in our previous 
calculations [4] that there are two main broad peaks in 
the energy loss spectrum at the energy range 
9 < hco ~< 2 Rydberg (Ry). The energy position of 
those peaks are given in Table I. 

From the results given in Table I we notice that the 
energy positions of both peaks move gradually to 
higher energies as I ql increases. The movement of 
energy loss spectrum peaks is discussed latter. 

This work is a continuation of our previous work 
[4-6], in which we have calculated the complex dielec- 
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tric function of copper in the three main crystal direc- 
tions [1 0 0], [1 1 0] and [1 1 1]. 

2. Method of calculation 
The microscopic dielectric function is defined by Adler 
[7] 

4he 2 
~ ( q + K , q + K ' , c o )  = ~,K, ~ 0 ( q + K )  2 

× ~(q + K, q + K', co) (1) 

where the irreducible polarization function ~(q + K, 
q + K', co) is given in the random phase approxima- 
tion by the following sum over occupied and unoccu- 
pied Bloch states: 

~(q + K, q + K', co) 

= 2 ~ (bk  [exp ( - i ( q  + K)  r)l b', k + q) 
b,b',k 

× X (b', k + q l exp [i(q + K') r]l bk )  

× X f (b ,  k) - f (b ' ,  k + q) 
E(b, k) - E(b', k + q) + hco + iq 

(2) 

D.o is the crystal volume, E(b, k) is the energy and 
( v l b k )  = ~bk(r) is a Bloch state wave function 

T A B L E  I The peaks position for the q vectors in the [1 10] 
direction at the energy range 0 < hco ~< 2 Ry [4] in units o f 2 ~ a  -~ , 
where a is the lattice constant 

q 1. Peak (Ry) 2. Peak (Ry) 

(¼, ¼, 0) 1.45 1.92 
(½, ½, 0) 1.50 1.93 
(43, 43, 0) 1.64 1.95 
(1, 1, 0) 1.74 1.98 
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characterized by the wave vector k and the band index 
b, andf(b,  k) is the occupation number, q is a positive 
infinitesimallysmall real number guaranteeing causal- 
ity. Reciprocal lattice vectors are denoted by K and 
K'. In Appendix 2 the MAPW wave functions are 
given with the important relations of the MAPW 
method. 

The matrix elements in Equation 2 are integrals 
over the Winger-Seitz cell. 

(b', k + q lexp [i(q + K )  r] lbk)  

* 
= Vcc sc  ~tb"k+q(r) exp [i(q + K) r] ~tbk(r ) d a r  

(3) 
where V~ is the volume of the primitive unit cell. For 
the calculation of the matrix elements (Equation 3) see 
Appendix 3. If the vector (k + q) lies outside the 
Brillouin zone it can be brought back into it by the 
addition of a suitable reciprocal lattice vector Q*. 

The appearance of the Fermi-Dirac distribution 
function in the formf(b,  k)  - f ( b ' ,  k + q), Equation 
2, shows that only the transitions from occupied to 
non-occupied states make contributions to the dielec- 
tric function. The summation over the non-occupied 
bands is confined in the calculation of the imaginary 
part, ez, over those bands whose energies are lying 
with a maximum value ho9 over the Fermi energy. On 
the other hand, the summation in the calculation of 
the real part, e,, is not limited, a point which is missed 
in the other investigations. For the present purpose, 
every Btoch function is approximated through about 
60 plane waves outside the inscribed APW-sphere and 
9 spherical waves inside it. The corresponding eigen- 
value problem of the rank 70 means that for every 
k-point there are 70 different eigenstates, 10 below the 
Fermi level and 60 above it. We have considered the 
Chodorow potential [8] described in the paper of Bur- 
dick [9] throughout the present calculations. To carry 
out the integrals over the first Brillouin zone (FBZ), the 
concept of the magic points is used [10, 11], for which 
10 k-points in the 48th of FBZ are taken into account. 

We are interested in the present work in calculation 
of the diagonal elements of the dielectric matrix in the 
[1 1 0] direction neglecting the local field effect. We 
shall discuss the effect of neglecting the non-diagonal 
elements of the dielectric matrix at the inverse matrix, 
n-i (q, o9), in Appendix 1. 

3. Results 
The detailed numerical investigations were done using 
a k-grid with 10 k-points in the 1/48th of the Brillouin 
zone. Due to the desire that the totality of the k-points 
and of the (k + q + Q*) points coincide, the dielec- 
tric function could only be found at the q values (i, j, k) 
(2~z/a)/4 where i, j and k are integers. We have consi- 
dered the wave vector q along the [1 1 0] direction. 

As a test for the accuracy of our calculations we 
have studied [4, 5]: 

(i) the sum rule, namely, 

~ [ ( b ' ,  k + q + Q*[exp [i(q, r ) ] l b k ) l  2 = 1 
b (4) 
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for k = (¼, ¼, 1) 2n/a and k = (1, 1, ~) 2g/a as a func- 
tion of]q[. The sum over b in Equation 4 extends over 
70 bands from which there are 10 occupied. 

(ii) Comparison of our results with the analytical 
known function (Lindhard function) for a free elec- 
tron model. 

(iii) Qualitative comparison of the static dielectric 
function (for ho9 = 10 -3 Ry) with the results of Kubo 
[12]. 

(iv) Comparison with the diagonal matrix elements 
e(q = K, o9) of Mekki [13] calculated with 28 k-points 
in the 48th FBZ. 

The accuracy of this test was discussed in detail in 
our previous work [5]: we refer the reader to that 
paper. This test shows also that our calculations with 
l0 k magic points are sufficient for the present purpose. 
Mekki [14] also calculated el(q = O, co), e2(q = O, o9) 
and Im [ -  1/e(q = O, o9)] with l0 k-points by using 
the MAPW method. His results are in good agreement 
with the optical measurements of Hagemann et al. 
[15]. 

The energy loss spectrum of a metal is obtained by: 

Im [ - e ( q ,  o9) l] = e2(q, o9)/[e2(q, o9) + e~(q, o9)], 

(5) 

if the local field effect is neglected (see Appendix 1). 
Our results for Im [ - e - l ( q ,  co)] are given in Fig. 1 

for the wave vectors q, (¼, 1, 0), (½, 1, 0), (3, 3, 0) and 
(1, 1, 0), in units of (2re/a), where a is the lattice 
constant. 

The real and imaginary parts of the complex dielec- 
tric function el and e2 are given in Figs 2 to 6. The 
following notations have been used throughout the 
work: el (q, co) ( . . . .  ), left ordinate; e2(q, o9) ( - . - ) ,  right 
ordinate. The energy ho9 is given on the abscissa in 
Rydberg units (1 Ry = 13.6058 eV). The vector P = 
q + K, in units of 2g/a, is given between angled 
brackets. In this paper K = (0, 0, 0) (i.e. P = q). 

The values EPSREMAX and EPSREMIN describe 
the maximum and minimum values of el (q, co), respec- 
tively. Similar notations are used for e2(q, co), EPSIM- 
MAX and EPSIMMIN. In Figs 3 and 4, el (q, co) and 
~2 (q, o9) are given separately for q = (½, ½, 0) 2~z/a. 

4. Discussion 
The behaviour of the functions Im [ - e - l ( q ,  co)], 
el (q, o9) and e2(q, co) is similar to one another for the 
first three wave vectors, namely (¼, ¼, 0), (1, ½, 0) and 

3 3 (~, ~, 0) but for the fourth vector, (1, 1, 0), the position 
of the peaks and their shapes become different. The 
same character is noticed in our previous calculations 
[4] in this direction and in the other two main crys- 
tallographic directions [1 0 0] and [1 1 1]. This charac- 
teristic behaviour is for all wave vectors such that: 

[q~ [ > [qx I in the A direction, 

I q~ [ > [ qi~ r in the Z direction, 

and 

I qA[ > I qL] in the A direction, 

where the high symmetry points X, K and L at the 
surface of the first Brillouin zone (FBZ) have the 
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P = 41 .00 )  1.00~ 0 . 0 0 )  Figure t Continued.  
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coordinates (27z/a) (0, 0, 1) (2n/a) (3, 3, 0) and (2~/a) 
~-, 3) with respect to the F point, respectively. Kubo ( 1 , 1  1 

et al. [16] also noticed a characteristic behaviour of the 
wave vectors I ql > 3 (2rc/a) from the smaller ones in 
the [1 0 0] direction. 

4.1. Comparison with experiments 
If  we neglect, for instance, the q-dependence of e for 
the smallest wave vector [171, namely q' = (1, ¼, 0) 
2re~a, i.e. s(q', co) ~ e(co), then we could be able to use 
the available experimental results, for example, the 
optical absorption coefficient, #, and the density of 
oscillator strengths f ( E ) .  As noted by Wehenkel [18], 

4.0 

peaks in f ( E )  in our energy range occur near minima 
of Im ( -  1/Q. According to t h e f ( E )  curve of Feld- 
kamp et al. [19], the curve has two minima in our 
range at 3.09 and 3.67 Ry, which is in a very good 
agreement with our fourth and fifth peaks (see Fig. la). 
The first peak in our energy loss spectrum (ELS) 
situated near 2.1 Ry which is very near to the well- 
known 2.06 Ry peak of Feldkamp et al. [19], Wehen- 
kel [18] and Creuzburg [20]. It is also known [21], that 
peaks in # are related to a slope change in the e 2-curve 
and to a shoulder in the el-curve which appears in the 
same energy range. According to the #-curve of Haen- 
sel et al. (HKS) [22] and that of Wehenkel and Gauthb 
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T A B L E  I I  The opt ica l  absorp t ion  coefficient, # (10 s cm -~) cal- 

culated f rom Fig. 2 us ing E q u a t i o n  6 (as present  work)  c o m p a r e d  

wi th  o ther  work  

E(Ry) Present HKS[221HKSS124] SHK[251W[18I WG~3] 
work 

2.06 9.8 - - 8.5 8.5 
3.10 7.7 7.5 7.6 7.6 5.8 5.8 
4.00 7.5 6.7 6.7 6.7 5.2 5.2 

(WG) [23], there is a peak at 42 eV ( = 3.09 Ry) which 
is very clear in the HKS-curve and much weaker in the 
WG-curve. On examining e~ and e2 curves, Fig. 2, it 
can be observed that both features are very.clear near 
3.1 Ry, which indicates that there is a #-peak around 
this energy. Moreover, let us calculate the #-values at 
some representative energies from Fig. 2 and compare 
them with those of other workers. The optical absorp- 
tion coefficient, #, is given by [21] 

20) # _ _ { 1  2 = 2 - [ (~1  -~- '£2) 1/2 - -  ~ l ] }  1/2 (6) 
c 

Table II  shows that our values are in reasonable agree- 
ment with those values within experimental error. 

4.2.  M o v e m e n t  of e n e r g y  loss  s p e c t r u m  
p e a k s  

The movement  of  ELS peaks to the high energy side 
with increasing Iq[ is noticed from Kubo e t  al .  [16] in 
the A direction and Seoud [4, 6] in A, I2 and A direc- 
tions, which can be explained on the basis of  the band 

structure of copper as a result of  electron transitions 
between broad maxima and minima, as for example 
near L and F points  

4.3. The  b e h a v i o u r  of/31 - cu rves  in the  h i gh  
ene rgy  range 

It seems for the first time that there is contradiction in 
our results of  the real part  e~[q = (1, 1, 0) 2re~a, co] 

if it is compared with the el-curves for the smaller 
q-vectors, because e 1 decreases with co for the first 
three wave vectors, namely q = (¼, ¼, 0) 2 ~ / a ;  i = 

1, 2, 3, but e~ increases with co (away from the ripples) 
for q -- (1, 1, 0) 2 ~ / a .  The reason is that e~ at high co 
for both copper and from Lindhard [26] are similar. 
This is reasonable, because in this case we expect 
copper to resemble a free electron gas because the high 
energy excited states correspond to loosely bound 
electrons. This behaviour is also expected because 
el ~ 1 for all q-vectors considered in this paper, which 
means that the valence electrons are excited. Let us 
compare the copper and Lindhard e~- curves to prove 
the similarity between their behaviour in the energy 
range 2 < rico <~ 4 Ry (away from the e c~-ripples)• In 
Appendix 4 the behaviour of  the Lindhard dielectric 
function is discussed. 

For  Iql = 2 v 2 ( 2 r c / a ) ,  i.e. q = (1, 1, 0) 2rc/a ,  elf i~a 

reaches its minimum values, 0.860, at 3.29 Ry then 
increases to the value 0•933 at 4 Ry [4]. In the case of  
copper, ec~ has a value of  0.955 at 4 Ry and its value 
at 3.29 Ry reaches 0.938• For  comparison we must 
study the elLind-curve for Iql = 1.0606(2~/a), i.e. when 
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q = (3, ¼, 0) 2n/a the curve has its minimum value 
0.688 at 2.15 Ry then increases with increasing co and 
reaches 0.958 at 4 Ry. For  copper the e cu has its mini- 
mum 0.817 at 2.37 Ry then increases reaching 0.938 at 
4Ry.  

From our previous comparison it is easy to see why 
el for q = (1, 1, 0) 2n/a has a different behaviour from 
the other smaller wave vectors, but each curve of  them 
has a similar behaviour to the corresponding e~ ind- 
curve. 

In Table III, el cu and ell ind are compared for the same 
wave vectors at the representative energy hco = 4 Ry 
to see that not only do both curves have a similar 
behaviour but also that the numerical values are very 
close to each other in our energy range. For  more 
details about the Lindhard function, see Appendix 4. 

The origin of  the calcuhited features in ez-Curves are 
mainly due to transitions from the 3d occupied bands 
to the higher empty bands [4, 14, 16, 27]. Also the d - f  
transition makes a considerable contribution in the 
high energy range [16]. 

T A B L E  I I I  The corresponding numerical  values of  ~Lind [4] 
and  ecu at he) = 4 R y  for the given wave vectors in the [1 1 0] 
direction 

q/(2__~) eCu(q, hco=4Ry) e~i"d(q, h o  = 4Ry)  

(¼, ¼, 1) 0.879 0.955 
(½, ½, 0) 0.994 0.983 
(¼, ¼, 0) 0.938 0.958 
(1, 1, 0) 0.959 0.933 

5. C o n c l u s i o n s  
We believe that now is a suitable time for the experi- 
mentalists to begin to study and measure the q-depen- 
dence of the complex dielectric function and energy 
loss spectrum of  real metals, which is of great import- 
ance in being able to measure many associated physi- 
cal phenomena, and for the theoreticians to check 
their results, which might be useful to correct the 
calculated band structures of  real solids. It is also clear 
that the calculation of  the complex dielectric function 
and the energy loss spectrum in the high energy range 
is not of less importance than that of the low energy 
range, expecially for those metals such as copper, 
gold and silver, for which plasma frequencies are not 
defined. 
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A p p e n d i x  1. T h e  C o p p e r  local  f ie ld  
c o r r e c t i o n s  

The first estimation of the copper non-diagonal ele- 
ments of  the dielectric matrix; those elements with 
K ¢ K'  in Equation 1, was first done by Kubo [12], 
who calculated the static dielectric function of  copper, 
e(q, co = 0), in the three main principal directions of 
q, [1 00], [1 1 0] and [1 1 1]. Kubo considered only the 
eight nearest neighbour reciprocal lattice vectors 
during the non-diagonal element calculations, proving 
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that the non-diagonal elements of the inverse dielec- 
tric matrix are fairly small. 

Mekki [14] has recently calculated quantitatively, 
for the first time, the local field effects at the inverse 
microscopic dielectric matrix ~-~ (q, co) in the long 
wave limit as q ~ 0 for copper. He considered the 
contribution from the first and second reciprocal lat- 
tice neighbours. Mekki found that the non-diagonal 
elements of the symmetric hermitian dielectric matrix 
~(q, co) are, in general, smaller by a factor of 7, than 
the diagonal elements. The elements of ~ defined as: 

~ ( q  + K, q + K' ,  co) 

= 6~¢,x, + 47z ~(q + K, q + K', co) (A1) 
Iq + KI [q + K't  

(see Equation 2) which is connected to the original 
dielectric matrix elements by 

Iq + g '[  
e(q + K, q + K', co) - 

Iq+KI 
× x(q + K, q + K', co) (A2) 

and its inverse through 

Iq + K'I 
e-l(q + K, q + K', co) - 

[ q +  KI 

× - L ( q  + K, q + K', co) (A3) with 
with: 

E ~  l(q _.}_ K,q + K",CO) 
K" 

× ~(q + K" ,q  + K',o)) = 6x, x, (A4) 

In the previous relations e(q + K, q + K', co) is a 
matrix element of the matrix ~(q, co), at which the 
reciprocal lattice vectors K and K' give numbers to 
rows and columns, the same notation is used for 
x(q, co) and the inverse matrices. 

Mekki [14] also proved that the local field effects in 
general correct the diagonal elements of e-l(K, K, co) 
with a small correction of 5 to 15%. 

Append ix  2. M A P W  w a v e  funct ions  
The wave functions of the modified augmented plane 
wave method MAPW [28, 29] are expanded in soherical 
harmonics and radial solutions of the wave equation 
within a sphere inscribed in the atomic polyhedron of 
radius r0. By suitable choice of the radial functions it 
is possible to obtain wave-functions which are well 
orthogonal to the functions of the core electrons. 
Outside the sphere the wave functions are expanded in 
plane waves, having the correct translational symmetry, 
also the wave functions and their first derivatives are 
continuous in the whole space. 

The MAPW wave functions have the following 
expression [28]: 

Obk(r) = ~ v(k, Kj) exp [i(k, Kj)r] 

L 2 / +  1 

+ @ ( r 0  -- IrD Z (2l + 1) i / ~ r//v 
l = 0  v - - I  

~ A,,v R,/(r) - ~ v ( k ,  Ki) y,~ X 

× [(k + ~ ) ° ] j / ( [k  + Ksl r)~y/v(r °) (A5) 
) 
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where: ~ = a reciprocal lattice vector, b = band 
index, ( ~ ( x )  = Heaviside step function, 

(~)(x) = {01 x > 0 x < 0 

j/(x) = spherical Bessel function, R./ = the solution 
of the radial differential equation, L = the maximum 
angular momentum quantum number, which is taken 
equal to 2, i.e. l = 0, 1, 2, throughout this paper and 
n = the number of zeros of R./ at the interval 
0 < r ~ < r  0. 

The real valued spherical harmonic functions y/~ are 
defined as: 

t" m I v = 2 m +  1 
) ( l - -  m)!/l!Pl (cos 0) cos mq5 m = 0 . . . .  l 

yt~(O, ¢) 

[ (l-- m)!/l'p/n(cosO)sinmO Vm22~,...l 

(A6) 

They have the following orthogonality relations: 

4~ 1 6/r 6~, ;a Y/v(r°) Yrv' (r°) df~ - 2l + 1 rhv 

t 
l forv  = 1 

= (A7) 
qt~ 2(l!)2 for v > 1 

(l  - rn)!(l + rn)! 

The coefficients A./v and v(k, Kj) satisfy the continu- 
ity conditions [29] 

v(k, Ks) ye~ [(k + Kj)°]j/(Ik + Kilt0) 

= ~ A.t~ Rn/(r0), 
n 

v(k, Kj) y,~ [(k + ~)0] d jr ([k + Kilr ) 
r 0 

d ,0 = ~ A,/~ ~ R,, (r) (A8) 
n 

which guarantee the wave functions and their first 
derivatives to be continuous across the surface of the 
APW spheres. 

Append ix  3. The mat r i x  e lements  
(b' ,  k + q + Q* I exp (iqr) lb, k) 

We give here the expression of these matrix elements 
in the MAPW method [6] 

(b, k + q + Q* t exp (iqr) lbk) 

= Z v* (k + q + Q*, Ks. ) v(k, Kj) S~.,y 
j ' , j  

+ ~ v* (k + q + Q*, Kj,) A.t~Si,,.l~ 
j ', nlv 

+ Z * v(k, xj) so,,,v,j 

j ', nlv 

n'l 'v '  
n ' l ' v ' , j  

+ Y~ * An'rv' A.lv S.,rv,.lv (A9) 
nTv'nlv 

To simplify the equations, let us use the following 



abbreviations: 

SCG(/v, l'v', l"v") = 1 il r+r" 

I ! x (2/ + 1)(2/ + 1)(2/" + 1) rh~th,¢rh,,<, 

x fo y,v(r °) y,,¢(r °) yr,~,,(r °) df~ 

__4~ ,o 
fo ji(~r) jr(flr) jr,(yr) r 2 dr := JJJtr r,(~, [1, 7) 

V c  ' , 

% is the volume of the primitive unit cell 

__4~ ,0 
~o j1(~r) jz([3r) r 2 dr .'= J~(~, fl) 

'O c 

4__~ f~o R,z(r) j,([p[ r) r 2 dr ,= RJT(IPl) 
72 c 

4n ;~o R,,(r)jr(lp[ r)jr,([ q l r) r 2 dr .'= RJJl~,l,,r,([p l, I q I) 
'U c 

and 

4___~ f~o R~l(r) R~,r(r) jr(lq[ r) r 2 dr 
73 c 

• .=  RRJff , ; , , ( I  ql) 

(A10) 

It is to be noticed that (l - l '  + l") in the Glebsch- 
Gordan coefficients, SCG, is an even number, i.e. 
those coefficients are real. 

With definitions (A10) the submatrices, S, have the 
form: 

L 2l+ 1 

Sj7 = 6K, x:.-Q* - -  ~,  ~,  (2l + 1)rh, y,,Ck + K j )  
I = 0  v = l  

x y,~(k + Q* + Kj,) 

x JJ , ( Ik  + gl ,  Ik + g + Q*I) 
L 2l+ 1 

-- E E (2l + 1)r]lvYl~ 
l = 0  v = l  

x (k + q + Q* + K/)y,~(k + q + Kj) 

x JJ,(lk + Kj + ql, Ik + q + Q* + ~ ' l )  
l + l '  

+ Y, Z y, SCG (Iv, Z'v', Z"v") 
l , l '  1"=]l-1'1 v,v',v" 

x y,~(k + Kj) Yr,¢,(q) yr,.(k + q + Q* + Kj) 

x JJJ(u',r') (I k + Kj ], 

x Ik + q + Q* + ~-I, Iql), (All )  

Si,,,v = (2l + 1) th~ RJ7 (Ik + Q* +/(1., I) 

× yz~(k + Q* + ~ , )  

- ~ SCG (Iv, l'v', l%") Yr~"(q) Y,,~, 
l ' , l" ,v ' ,v" 

x (k + q + Q* + Kj,) RJJt~,rr , 

x (Ik + q + Q* + K/l,  Iql) (A12) 

S,.r<j = (2l' + 1)rh,~ R Jr, (]k + q + ~1) 

x Yr~,(k + q + Kj) 

- ~ S C G  (Iv, l'v', l"v") 
l , l",v,v" 

x y,,,~,, (q)Y,v (k + Kj) 

x RJJf, i,,l,, (Ik + ~1, Iql) (A13) 

and Sn'rv',nl, is given by: 

S,,r~,nzv = ~ SCG (Iv, l'v', l"v") Y,"v"(q) 
l",v" 

x RRJf, i(),, (Iql) (A14) 

For the evaluations of these integrals, the programs 
used and the fine details of the calculations, see [4]. 

Appendix  4. The Lindhard funct ion 
The real part of the Lindhard dielectric function, e~.d 
(I q I, CO) can be written as [26] 

e 2 1 
~i.~ ( I q l ,  CO) 1 + - -  - -  2nkr ~3 

X E g b ( , + ~ )  q - , ; b ( 0 ~ - f i ) ]  (115) 

where 

= I ql/kr, fi = hco/k# 

and kf is the radius of the Fermi sphere, with 

q5(7) = 7 + 1 - ~- In ~ (116) 

For all non-zero values of I ql, the e~ind(] q I, CO) 
decreases with increasing CO, so that the maximum value 
of e~nd always occurs at CO = 0 and then decreases to 
a minimum negative value and then increases to a 
constant value, which is slightly less than one. 

As lql becomes greater than 0.703 (2n/a), ELind(I q], CO) 
is always positive for all frequencies. Its value decreases 
with CO and reaches its minimum positive value at COral. 
then increases to a constant value, which is slightly 
greater than one. 

In the present range of energy, 2 < ha) ~< 4Ry,  
E~ind (I q I, co) is positive for all wave vectors, which is the 
same behaviour as in all real metals. 

For the sake of comparison and the completeness of 
the Lindhard function for homogeneous electron gas, 
we give the analytical form of •Lind(f q I, co) 

g: ([q[,co) - 2~ r~3 

where 

with 

(A17) 

+ 2) - ( ~ ( y  - 2)] 

(AI8) 

10 6 > 0  
® (a) = a < o 

It is easy to notice from Equation A 17 that gLind (I q I, co) 
at first increases linearly and then falls quadratically 
with co for each Lql- Also that e2Lind(lql, CO = 0) is equal 
to zero, which is the same behaviour as in real metals. 
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